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ON A RELATION BETWEEN MAXIMUM-LIKELIHOOD CLASSIFICATION 
AND MINIMUM-CROSS-ENTROPY CLASSIFICATION 

INTRODUCTION 

Maximum likelihood (ML) and related classification methods are often used to choose from a set 
of hypotheses based on known data. The theoretical justification for these methods depends on the 
assumption that one of the hypotheses is true, but they are used even when it is known that this 
assumption is false. This practice can be justified on the practical grounds that it works, but there is no 
compelling theoretical justification. In minimum-cross-entropy (MCE) classification, one classifies data 
in terms of estimated underlying probability densities using a nearest-neighbor rule and an 
information-theoretic distortion measure [1]. Speech coding by vector quantization [2,3] can be 
derived as a special case of MCE classification [1]. 

In this report I consider the relation between ML classification and MCE classification of samples 
from an unknown probability density when the hypotheses comprise an exponential family. I show that 
ML and MCE lead to the same classification rule, but that MCE applies in the general case when one 
cannot assume that one of the hypotheses is true and thereby provides a theoretical foundation for the 
technically incorrect use of ML. I illustrate the results in terms of a recently developed method of 
estimating covariance matrices [4]. 

STATEMENT OF THE CLASSIFICATION PROBLEM 

Let |£s(x):s€A} be a finite or infinite set of probability densities on some vector space. Let qi(x) 
be the probability density for vector-valued samples from some unknown process, and let 
X -xlf x2, .... xM be a sequence of M vector- valued samples from <7+ Let (//$:s€A} be the set of 
mutually exclusive hypotheses 

//j = X is a sequence of independent samples from qs (1) 

The problem is to classify X by choosing one of the densities qs. There are really two problems here, 
depending on whether or not one can assume a priori that one of the Hs is true. If so, then our prob- 
lem is to find l such that q*(x) - q,(x). If not, then the problem is to find / such that q,(x ) is "closest 
to" qHx) in some well-defined, acceptable sense. Most of the time, the latter case applies—one cannot 
assume that q* - q, for any t. Speech-processing applications are good examples—speech is dealt with 
in terms of Gaussian models even though it is well known that speech is not Gaussian. We restrict con- 
sideration to classification densities q, that comprise an exponential family, 

qs(x) - /?(x)exp (s). -x(s)- z&r/*(*) 
*-i 

(2) 

where p(x) and fk(x) are fixed functions and k(s) and ßj,s) are constants.  A set of Gaussian densities 
is one example of such an exponential family. We place no restrictions on the unknown process <?+. 

Exponential families can always be expressed as the result of a minimum cross-entropy problem 
[5-7].  In particular, the qs satisfy 

H(qs,p) - minH(q'.p), 
Q' 
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where H is the cross-entropy (discrimination information, directed divergence, I-divergence, Kullback- 
Liebler number, etc.), 

/ 
M(q,p)-   I   tf(x)log q(x) 

X«) 
and where q' varies over the set of densities that satisfy the constraints 

dx, (4) 

S qs(x)fk(x)dx - Fi'} (5) 

for known numbers Fk
(s). In the solution (2) the constants 0*5) and X(s) are Lagrangian multipliers 

chosen to satisfy the constraints (5) and       ~ 
J qs(x) dx - 1. 

In the notation of Refs. 7 and 8, one can express (3) as q, - p ° /,, where /, represents the informa- 
tion given by the constraints (5). The density p is called the prior, and the densities qs are called poste- 
riors. 

REVIEW OF THE TWO CLASSIFICATION METHODS 

Maximum-Likelihood Classification 

In the maximum-likelihood (ML) approach one classifies X by 

maxp(.X\Hs), (6) 

where p(\ \HS) is the probability that X is the result of n independent samples from qs(x). Bayes's 
law yields 

p(Hs\X) - p(X\Hs) -^-. 

so that ML classification is equivalent to maximum-a-posteriori (MAP) classification, 

max/KZ/JX), 
i 

when the hypotheses Hs have equal prior probabilities. ML classification is used in a variety of applica- 
tions, even when clearly one cannot assume a priori that one of the hypotheses is true. This practice 
can be justified on practical grounds—it works—but it has not been justified on compelling theoretical 
grounds. 

Minimum-Cross-Entropy Classification 

Minimum-cross-entropy  (MCE)  classification of information from the  unknown process  q* 
proceeds from knowledge of the expectations 

/ 
qHx)fk(x) dx -Fk, (7) 

that is, expectations of the same constraint functions /*(x) as in (2). The quantity F • F\, • • • ,F„ is 
called a feature vector—its elements are the data to be classified. Let /represent the constraints (7), and 
let the density p in (2) be considered as a prior estimate of ?f. Then a method of classifying F using 
MCE consists of the following two-step procedure [1]: 

1.      Compute fl — p o /, the minimum-cross-entropy estimate of q* based on the information 
(7). 

 .._._._•-..   . .   •_.___ -  - -  .-  _  - 
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2.      Choose one of the classification densities by the MCE rule 

min H(q,qs). (8) 
i€A 

In Ref. 1 it is shown that 

H(q\qs) = H(q\q) + H(q,qs) (9) 

holds. Now, the MCE estimate q — p <> / minimizes the term H(q*,q) in the following sense: Of all 
densities having the general form (2), q is the closest possible density to g+. (This property is known 
as expectation-value matching [7].) Since the second term on the right-hand side of (9) is minimized 
by (8), it follows that MCE classification is optimal in the sense of minimizing the total distortion 
H(q*,qJ. An alternative MCE method of classifying F is to use the rule 

mmH{qs oI,qs). (10) 
j€A 

In words, each of the classification densities qs is in turn considered as a prior estimate of qf; when the 
information F is taken into account, the resulting posterior estimate of q* is qs ° /. The rule (10) 
chooses the classification density qs that, when considered as a prior estimate of g1', is changed the least 
by taking F into account. 

Both of the MCE rules (8) and (10) have compelling intuitive and information-theoretic 
justifications. Fortunately one does not have to choose between them. Because the constraints (5) and 
(7) involve the same constraint functions/^(x), it follows [7, Property 14] that 

ft0/— (p o Is) o / ~ p o I — q (11) 

holds, which in turn means that (8) and (10) are equivalent. 

Computationally, it turns out that one need not compute q = p » / = qs » /, as the rules (8) and 
(10) are equivalent to 

X(I) + £ ß(
k
s)Fk\, (12) 

where the k(s) and/3^' are the Lagrangian multipliers from the classification densities (2) (1]. 

For the application being considered here, the expectations Fk are estimated from X by 

**-T7 £/*<*'>• <13) 

COMPARISON OF THE CLASSIFICATION METHODS 

I begin the comparison by computing the consequences of the ML rule (6) given the form (2) for 
the classification densities. One has 

p(xi//s)-n &(*/) 

M      n 1      ** 

mm 
J€A 

- exp 
l-\ k-\ 

JJpiXi), (14) 
i-i 

bearing in mind that this is valid only if one knows that X came from one of the qs(x). 

The ML rule (6) is equivalent to the rule 

min{-logf(X|//J)}. 
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Substitution of (14) yields 

min 
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Mkis) + £ i &s,/*(x,) - $ log p(x,) 
i-1 *-l 1-1 

(15) 

The last sum in (15) involves terms independent of sand can therefore be dropped.   Also, dividing by 
the constant M has no effect.  Hence (15) is equivalent to 

n]\(s)+ j\ß{
k
s)— T,fk<X,) 

Substitution of (13) yields 

min 
s k-l 

which is the same as the MCE rule (12). 

I have just shown that ML classification is equivalent to MCE classification when one can assume 
that X comes from one of the classification densities qs. This fact was shown previously by Kupperman 
[9] and Kullback [5], although the derivation here is carried out more directly and in terms of the com- 
putational MCE classification rule (12) that was derived in Ref. 1. Recently, Csiszar and Tusnädy have 
considered the connection between ML and MCE when X results from a mapping of samples from one 
of the q, [10]. 

What about the case when one cannot assume that X comes from one of the classification densi- 
ties qs? In this case it is common to use the ML rule (6) anyway, without good theoretical justification. 
But the case is covered by MCE classification, because rule (12) was derived out in Ref. 1 without 
assuming that the feature vector F is the same as any of the FKs> that determine the classification den- 
sities by (3), (4), and (5) or that estimates of F are obtained by sampling one of the q,. It was 
assumed only that the goal is to find the F(>) that "best resembles" F and that the MCE criterion (8) is 
reasonable. When X cannot be assumed to come from one of the qs, it turns out that those who apply 
ML anyway are doing MCE classification. 

DISCUSSION 

MCE classification provides a general method for taking a sequence of independent vector-valued 
samples x, from an unknown process qf and classifying that sequence by identifying a member of a set 
of exponential-class densities [qs(x):s€\]. The classification rule (12) combines the results of a two- 
step procedure: The first step obtains from X a minimum-cross-entropy estimate q of q1'. The second 
step identifies the density q, that is closest to q in the cross-entropy sense. With the assumption that 
the x, come from one of the qs, MCE classification reduces to ML classification. Without this assump- 
tion MCE classification applies anyway and thereby provides a theoretical justification for the technically 
incorrect use rf ML. 

Furthermore, the qs may themselves be approximations if the constraints F(l) in (5) are approxi- 
mations based on training data in the same sense as (13). That is, the qs may be approximations based 
on samples from "true densities" <j/. Then, even if one can assume that the classification-data vector X 
comes from one of the £/, one cannot assume that X comes from one of the classification densities qs\ 
again, ML cannot be applied in principle. 

AN EXAMPLE-ESTIMATION OF STRUCTURED COVARIANCE MATRICES 

Recently, Burg, Luenberger, and Wenger [4] have generalized the popular Burg technique [11] for 
estimating the autocorrelation function of a random process from time-domain samples. The new 
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method estimates covariance matrix of specified structure from vector-valued samples of a random pro- 
cess.  Written in terms of the notation here, Burg et al. consider the set of classification densities 

$,(»)- (27r)-':'v|Rs|-'
iexp(-l/:xt.R-1.x). (16) 

This is Eq. (1) in Ref. 4. The superscript t indicates a transpose, the raised dot (•) indicates a vector or 
matrix product, and {Rs:s€.\} is a finite or infinite set of feasible covariance matrices. Given a data 
vector X consisting of M vector-valued samples from an unknown density <?+(x), the sample covari- 
ance matrix R is defined as 

1      M 

Burg et al. assume that X came from one of the qs (that is, qf = qs holds for some s), and they classify 
X by the ML rule (6).  The result is the classification rule 

max{-log|Rs| - Tr(Rr'»R) (18) 

where Tr indicates a trace operation.   This is Eq. (4) in Ref. 4, except that R and S are replaced 
respectively by R s and R. 

Since (16) belongs to the class of generalized exponentials, the results of the section beginning on 
page 2 apply—(18) must be equivalent to MCE classification, and (18) must also apply in the more 
realistic case where one cannot assume that X comes from one of the qs. For completeness, one can 
demonstrate the connection explicitely by showing that (18) is a special case of the MCE rule (12). 

One needs to express (16) as minimum-cross-entropy posteriors qs = p <> Is. That is, one needs 
to express (16) in the form (2).  As a prior, one can use 

p(x)- (27r)-'/i'vexp(-l/2Xt.I.x), (19) 

where I is the identity matrix.  Using (19), one rewrites (16) as 

$,(«)- p(x) lRsh* expC-Vix1.«,-1 - I)»x). (20) 

Defining 

\(l)--log|Rj-* (21) 

and 

^-^{Rr'-I}, (22) 

permits one to rewrite (20) as 

qs(\) = p(x)exp -xw-£W}v& (23) 

which is just the desired form (2).  The constraint functions in this case are /y(x) = XjXj.  The expec- 
tations (.5) are just the covan mces 

/ 
qs(x)x,Xjdx - {R,V 

Given the data vector X, elements {R}y of the sample covariance matrix (17) are just estimates 
of the expectations J dxq^(x)xixJ. Hence, using (17), (21), and (22), one can write the MCE 
classification rule (12) as 

—•—^ . .—-. *• .- . . .  
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mini'/i log |R,| + '/i I{Rs-l-D,y(R)y (24) 

The term involving the identity matrix I does not depend on s.  It follows that (24) is equivalent to 

min loglR.I + JlRrVRltf 
u 

(25) 

where the factor '/> has also been dropped. Since R is symmetric, as can be seen from (17), then 

£{R71},y{R},> = Tr(R;'.R). 

mm 
s 

loglRj + Tr(Rr,.R) , 

Eq. (25) then becomes 

which is equivalent to (16). 

REFERENCES 

1. J.E. Shore and R.M. Gray "Minimum-cross-entropy pattern classification and cluster analysis," 
IEEE Trans. Patt. Anal, and Machine Intel!. PAMI-4, 11-17 (Jan. 1982). 

2. A. Buzo, A.H. Gray, Jr., R.M. Gray, and J.D. Markel, "Speech coding based upon vector quanti- 
zation," IEEE Trans. Acoust. Speech Signal Processing ASSP-28, 562-574 (Oct. 1980). 

3. R.M. Gray, A.H. Gray, Jr., G. Rebolledo, and J.E. Shore, "Rate-distortion speech coding with a 
minimum discrimination information distortion measure," IEEE Trans. Inform. Theory IT-27, 
708-721 (Nov. 1981). 

4. J.P. Burg, D.G. Luenberger, and D.L. Wenger, "Estimation of structured covariance matrices," 
Proc. IEEE 76, 963-974 (Sept. 1982). 

5. S. Kullback, Information Theory and Statistics, Dover, New York, 1969, and Wiley, New York, 
1959. 

6. I. Csiszar, "I-divergence geometry of probability distributions and minimization problems," Ann. 
Math. Stat. 3, 146-158 (1975). 

7. J.E. Shore and R.W. Johnson, "Properties of cross-entropy minimization," IEEE Trans. Inform. 
Theory IT-27, 472-482 (July 1981). 

8. J.E. Shore and R.W. Johnson, "Axiomatic derivation of the principle of maximum entropy and 
the principle of minimum cross-entropy," IEEE Trans. Inform. Theory IT-26, 26-37 (Jan. 1980). 

9. M. Kupperman, "Probabilities of hypotheses and information-statistics in sampling from exponen- 
tial class populations," Ann. Math. Stat. 29, 571-574 (1958). 

10. I Csiszar and G. Tusnady, "Information geometry and alternating minimization procedures," to be 
published. 

11. J.P. Burg, "Maximum Entropy Spectral Analysis," Ph.D. dissertation, Stanford University, 1975 
(University Microfilms 75-25, 499). 

• - • - . - • - • - --—.—, .  ------ 



IJ&3'* 
> " i 

' 45*'-* " ..   <•' 

. #;^ 

- 

!^V ^>t—   —'S   * 
P» v ' f ^ " 


